If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=3Y^2-42Y+5
We move all terms to the left:
-(3Y^2-42Y+5)=0
We get rid of parentheses
-3Y^2+42Y-5=0
a = -3; b = 42; c = -5;
Δ = b2-4ac
Δ = 422-4·(-3)·(-5)
Δ = 1704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1704}=\sqrt{4*426}=\sqrt{4}*\sqrt{426}=2\sqrt{426}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{426}}{2*-3}=\frac{-42-2\sqrt{426}}{-6} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{426}}{2*-3}=\frac{-42+2\sqrt{426}}{-6} $
| -u+210=77 | | 160=1.6*2*y | | 0=-7x2+4x+34 | | -u+84=187 | | 2/5x+5=10 | | 18x+9=135 | | F(x)=1/2x^2+3x+7 | | 3x-6-7x=12-x+6 | | -8(14n+3)=n+6 | | 2.5x+10=4x-8 | | 18=6y+12 | | 4x+1+x+9=90 | | 5x+4+44=180 | | m-7/2=-1 | | g/5=-35 | | $72.00+x=$79.44 | | (2n-4)=1.5 | | 4(t+4)=28 | | 1/x+5=11/x | | x+92=229 | | 25x+30+25=180 | | 13w=6w+56 | | 25000x+6160,295x=16043 | | 2(4x+1)+-3=2x+-1 | | 25x+30+5=180 | | 5(4s+6)=110 | | 2(4x+1)+-3=4x+-2 | | 3x^2+12=2 | | -27-w=30 | | 25x+30+x=180 | | 1x-2x=5 | | x/x2-25-x+4/x2-5x=-8/x2+5x |